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Phase synchronization with type-II intermittency in chaotic oscillators
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We study the phase synchronization~PS! with type-II intermittency showing62p irregular phase jumping
behavior before the PS transition occurs in a system of two coupled hyperchaotic Ro¨ssler oscillators. The
behavior is understood as a stochastic hopping of an overdamped particle in a potential which has 2p-periodic
minima. We characterize it as type-II intermittency with external noise through the return map analysis. In
e t,e,ec ~where e t is the bifurcation point of type-II intermittency andec is the PS transition point in
coupling strength parameter space!, the average length of the time interval between two successive jumps
follows ^ l &;exp(uet2eu2), which agrees well with the scaling law obtained from the Fokker-Planck equation.

PACS number~s!: 05.45.Xt, 05.45.Pq, 05.10.Gg, 05.45.2a
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Synchronization is one of the basic phenomena ubiq
tously found in physical, chemical, biological, and phy
ological systems. In the classical sense, synchronizatio
periodic self-sustained oscillators is usually defined as lo
ing of the phasesnu12mu25const, due to weak interactio
while the amplitudes can be quite different. This pheno
enon has been quite well studied and has been used for
of practical applications in various engineering fields@1#.

Recently, the notion of synchronization has been exten
to coupledchaoticoscillators~i.e., individual oscillators are
chaotic without coupling!. One of the remarkable develop
ments is the observation of phase synchronization~PS! phe-
nomenon in a system of two mutually coupled nonidenti
self-sustained chaotic oscillators@2,3#. The phenomenon is
analogous to synchronization of periodic oscillators wh
only the phase locking is a matter of importance. Above
critical strength of coupling, suitably defined phases of t
chaotic oscillators lock each other and synchronize, wh
their amplitudes remain chaotic and uncorrelated with e
other. Also it was found that the phase differencef between
two oscillators increases with an intermittent sequence ofp
jumps before the PS transition occurs. This means that p
slips occur from time to time and the phase differen
changes by 2p during a rather small interval of time.

The intermittent behavior and its scaling properties n
the PS transition in a coupled Ro¨ssler system was studied b
several authors@4,5#. They provided an explanation for th
phase jumps by reducing the original system into a simplifi
model describing an overdamped particle sliding in a ‘‘no
wash-board potential.’’ Also by studying the scaling rules
the jumping behavior, they found that the phenomenon
related with type-I intermittency@7# in the presence of nois
@4,5#. So far, this has been known to be the only route to
PS transition in two coupled self-sustained chaotic osci
tors, while nothing forbids other types of intermittency
exist.

In this paper, we report another route to PS transit
exhibiting62p jumps, which is characterized by the type-
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intermittency with external noise. We consider the followin
two coupled hyperchaotic Ro¨ssler oscillators~HRO’s!:

ẋ1,252V1,2y1,22z1,21e~x2,12x1,2!,

ẏ1,25V1,2x1,210.25y1,21w1,2,

ż1,253.01x1,2z1,2, ~1!

ẇ1,2520.5z1,210.05w1,21e~w2,12w1,2!,

where two variablesx andw are coupled and the subscripts
and 2 refer to each of the oscillators. HereV1,251.0
6DV/2 is the overall frequency of each chaotic oscillato
ande is the coupling strength.

FIG. 1. The phase portrait of one of two coupled HRO’s pr
jected on thex-y plane. Initial values for HRO’s 1 and 2 ar
x1(0)5220.0, y1(0)5z1(0)50.0, w1(0)515.0 and x2(0)
5220.1, y2(0)5z2(0)50.0, w2(0)515.1, respectively. Equation
~1! is numerically solved by using a fourth-order Runge-Ku
method with the parameter mismatchDV50.001, and the same
values are used throughout this paper.
8826 ©2000 The American Physical Society
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To observe PS we must define a suitable phase relate
this system. Since the phase portrait of a hypercha
Rössler oscillator in thex-y plane explicitly shows a rota
tional trajectory around a center, (x0 ,y0) as shown in Fig. 1,
the phase can be defined in relation with this rotation, i
x1,2 andy1,2 are transformed into polar variablesA1,2 andu1,2
around the center of the rotation whereA1,2

5A(x1,22x0)21(y1,22y0)2 and u1,25tan21@(y1,2
2y0)/(x1,22x0)#. With these variables, Eq.~1! can be re-
written as follows:

Ȧ1,250.25A1,2sin2u1,22z1,2cosu1,21w̃1,2sinu1,2

1e~A2,1cosu2,1cosu1,22A1,2cos2u2,1!,

u̇1,25V1,210.25 sinu1,2cosu1,2

1
z1,2

A1,2
sinu1,21

w̃1,2

A1,2
cosu1,2

2eS A2,1

A1,2
cosu2,12cosu1,2D sinu1,2, ~2!

ż1,253.01~A1,2cosu1,21x0!z1,2,

ẇ1,2520.5z1,210.05w1,21e~w2,12w1,2!,

wherew̃1,2 is shorthand forw1,21x0V1,2 andx05216.0 and
y050.0 are used. By solving Eq.~1! or ~2! numerically, the
phase difference (f5u12u2) of the two oscillators is ob-
tained as shown in Fig. 2. Note that the onset of PS occ
near ec50.18 @6#. Before the onset of PS, the smaller t
coupling is the more frequently 2p jumps occur similar to
the case of the Ro¨ssler system. But in our system, the pha
difference jumps by 2p upwards or downwards irregularl
as shown in Fig. 2, while in the Ro¨ssler case it jumps only
upwards monotonously. In this respect, our system shoul
distinguished from the Ro¨ssler system qualitatively@2,4,5#.

FIG. 2. Time series of phase differencef in two coupled
HRO’s for various values of~a! e50.16, ~b! e50.17, and~c! e
50.18. 62p phase jumps are shown for the cases of~a! and ~b!,
while for ~c! the PS transition seems to be achieved for the obse
time scale.
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Here, we are interested in this new type of phase jump
behavior and would like to uncover the basic structure
hind it. For this purpose, the following equation for the pha
differencef is obtained from Eq.~2!:

df

dt
5DV1~0.251e!~sinu1cosu12sinu2 cosu2!

1
z1

A1
sinu12

z2

A2
sinu21

w̃1

A1
cosu12

w̃2

A2
cosu2

2eS A2

A1
sinu1cosu22

A1

A2
cosu1sinu2D . ~3!

The right-hand side of Eq.~3! can be rewritten in terms off
by grouping relevant terms, and then we obtain the follow
phase equation similar to that describing phase locking
periodic oscillators in the presence of noise@2,8,9#:

df

dt
5DV1a sinf1b sin

f

2
1j, ~4!

where

a5~0.251e!cos~u11u2!2
e

2 S A2

A1
1

A1

A2
D ,

b52H z1

A1
cosS u11u2

2 D2
w̃1

A1
sinS u11u2

2 D J ,

j5S z1

A1
2

z2

A2
D sinu21S w̃1

A1
2

w̃2

A2
D cosu2

2
e

2 S A2

A1
2

A1

A2
D sin~u11u2!.

Note that there are two time scales, i.e., the fast o
2p/V1,2, related to the frequency of each individual oscill
tor in Eq. ~2!, and the slow one, 2p/DV, originating from
the frequency mismatch in Eq.~3! which is the characteristic
time of f dynamics. Sincea andb andj are fast fluctuating
pieces compared with the time scale off variable, qualita-
tive features off dynamics can be revealed after averagi
a andb over the slow time scale, whilej is left intact as an
external noise in Eq.~4!:

df̃

dt
5F~f̃,e!1j, ~5!

where

F~f̃,e!5DV1^a&sinf̃1^b&sin
f̃

2
. ~6!

In Eqs. ~5! and ~6!, by f̃ we mean a new phase variab
which simulates originalf dynamics. Herêa&, ^b& repre-
sent averaged values for a long enough time interval whic
order of 2p/DV. This equation describes an overdamp
particle moving in a potential under the influence of exter
noise j, where the potentialV(f̃,e) is defined byF(f̃)

d
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52dV(f̃)/df̃ @4,10#. This averaged potential is obtained b
integrating the forceF(f̃,e) with respect to f̃, i.e.,
V(f̃,e)52*f̃F(f̃8,e)df̃8 up to an arbitrary integration
constant

V~f̃,e!52DVf̃1^a&cosf̃12^b& cos
f̃

2
. ~7!

Figures 3~a!, 3~b!, and 3~c! show time series off at e
50.16, the corresponding forceF and the potentialV, re-
spectively. As shown in Fig. 3~c!, the existence of
2p-periodic minima is the main feature of the potential r
lated with the phase jumping dynamics. Note that the ove
slope of this potential is negligible due to the small const
force termDV, so that the ‘‘wash-board potential’’ pictur
@4# is not applicable to studying the bifurcation related w
the intermittency in this system. With this potential structu
however, we can qualitatively explain the phase jumping
namics as a hopping of an overdamped particle betw
2p-periodic minima in the potential through thestochastic
processdriven by the external noisy forcej. In Fig. 3~c!,
when a particle is in a potential well, it can jump randomly
the nearest neighboring potential wells since the bar
heights of both sides of the well are similar. When the wel
not deep, the particle resides there for a short time inter
but it resides there longer when the well is deep. This beh
ior can be easily observed in the time series off.

To determine the type of intermittency explicitly, we o
tain the return map off from the original Eq.~2! by finding
fn at every 2p rotation of phaseu1. Figure 4~a! shows a
schematic relation among force, potential, and the co
sponding return map. In Fig. 4~b!, the return map shows
many cells separated by 2p corresponding to 2p-periodic
minima in the potential structure. The trajectory in the retu
map moves from one cell to the neighboring cells irregula
in accordance with62p jumps. To see the structure mo
clearly, we obtain the return map off̃ from the averaged Eq
~5! in one cell at every 2p rotation of phaseu1 when j
50. The solid curves in Figs. 4~b!, 4~c!, and 4~d! are the
results and they quite well follow the one obtained direc

FIG. 3. ~a! Time series of phase jumping dynamics,~b! the
time-averaged forceF(f), and~c! the potentialV(f) at e50.16.
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from the original system~2!. This means that the average
Eq. ~5! properly describes the main features of62p phase
jumping dynamics. From the shape of the curves, it is cl
that the return map is actually that of type-II intermitten
@7,11#. In Fig. 4~c! the center is a stable fixed point whic
becomes unstable when the slope at this point equals 1
the bifurcation pointe t50.038 as shown in Fig. 4~d!. The
trajectory can escape from the center to the nearest neigh
ing stable fixed points located each at62p distance away
through the stochastic process. Therefore the scaling of
average laminar length off ~here the laminar length is th
time elapsed between two successive62p jumps! is ex-
pected to follow that of type-II intermittency in the presen
of external noise.

In order to verify the above conjecture, we compare
average laminar length scaling relation obtained numeric
from Eq. ~2! with the analytical result obtained from th
Fokker-Planck equation~FPE!. The local Poincare´ map of
type-II intermittency with external noise is described by t
following difference equation@10–13#:

FIG. 4. ~a! Schematic relation among force, potential, and retu
map.~b! Return map~black dots! of original system~1! and return
map~gray dots! from the averaged Eq.~4!. ~c!, ~d! Magnified return
maps around one potential well withe50.16 ande t50.038, re-
spectively. Note that the tangent line at the center stable fixed p
becomes tangential to the diagonal line in~d!.

FIG. 5. Scaling relation: average laminar length ln^l& vs ue t

2eu2 in ~a! and ln(ln̂ l&22.6) vs lnuet2eu in ~b!. Note that the slope
in ~b! is approximately 2.0 within65% error in agreement with the
analytic estimation from the FPE.
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xn115~11e!xn1axn
31A2Djn , ~8!

wherea is a positive arbitrary constant andD is the disper-
sion of Gaussian noisejn . It is well known that the above
map ~8! can be approximated to the backward FPE in
long laminar region@14#:

]G~x,t !

]t
52V8~x!

]G~x,t !

]x
1D

]2G~x,t !

]2x
, ~9!

whereG(x,t) is the probability density of a particle at (x,t).
The scaling relation for the average escaping time can
derived analytically from this FPE. According to the analy
cal estimation made in our recent work@15#, the average
laminar length scales as follows whene t,e:

^ l &;^ l &0 exp~ ue t2eu2!. ~10!

Now, we perform numerical simulation to obtain the sc
ing law of the average laminar length from Eq.~2! and the
results are shown in Fig. 5. First we get the value ofy inter-
cept, ln̂ l&0, in Fig. 5~a! to determine the scaling exponent b
the linear regression. The slope of the regression line in
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5~b! is very close to 2.0 within65% error, which agrees
with the scaling exponent in Eq.~10!. Therefore our conjec-
ture based on the return map analysis is verified a
strengthened by this remarkable agreement with the re
obtained from the FPE. Also this agreement in turn justifi
our averaging out the fast fluctuating factorsa andb in Eq.
~5!, which marginally contribute as multiplicative perturb
tions in phase jumping dynamics.

In conclusion, we have found the type-II intermittenc
route to the PS transition in a system of two coupled s
sustained HRO’s. In this system, the phase difference
tween two oscillators exhibits apparently irregular62p
jumps near the onset of the PS transition. Furthermore,
have identified this behavior as type-II intermittency wi
external noise through the return map analysis and the
approach.
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