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Phase synchronization with type-Il intermittency in chaotic oscillators
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We study the phase synchronizati@®S with type-Il intermittency showingt 27 irregular phase jumping
behavior before the PS transition occurs in a system of two coupled hyperchassteRoscillators. The
behavior is understood as a stochastic hopping of an overdamped particle in a potential whiehgeodic
minima. We characterize it as type-Il intermittency with external noise through the return map analysis. In
€<e<e. (where ¢ is the bifurcation point of type-ll intermittency anel is the PS transition point in
coupling strength parameter spacthe average length of the time interval between two successive jumps
follows (1)~ exp(e—¢€?), which agrees well with the scaling law obtained from the Fokker-Planck equation.

PACS numbgs): 05.45.Xt, 05.45.Pq, 05.10.Gg, 05.4&

Synchronization is one of the basic phenomena ubiquiintermittency with external noise. We consider the following
tously found in physical, chemical, biological, and physi-two coupled hyperchaotic Rsler oscillatorHRO's):
ological systems. In the classical sense, synchronization of
periodic self-sustained oscillators is usually defined as lock- )'(12: — Q1 Y1921 o+ €(Xo1— X1 0,
ing of the phases #; —mé,=const, due to weak interaction
while the amplitudes can be quite different. This phenom-

enon has been quite well studied and has been used for a lot Y127 Q1 %120.2%1 2 Wi 2,
of practical applications in various engineering field _
Recently, the notion of synchronization has been extended Z1 5= 3.0+ Xy 52 2, (2)

to coupledchaotic oscillators(i.e., individual oscillators are
chaotic without coupling One of the remarkable develop-
ments is the observation of phase synchronizati®® phe-
nomenon in a system of two mutually coupled nonidentical . .
self-sustained chaotic oscillatofg,3]. The phenomenon is Where two variables andw are coupled and the subscripts 1

analogous to synchronization of periodic oscillators Whereand 2 refer to each of the oscillators. Hef®,,=1.0

only the phase locking is a matter of importance. Above a AQ/2 is the overall frequency of each chaotic oscillator,

critical strength of coupling, suitably defined phases of twoande is the coupling strength.
chaotic oscillators lock each other and synchronize, while
their amplitudes remain chaotic and uncorrelated with eact
other. Also it was found that the phase differercetween Y
two oscillators increases with an intermittent sequencemf 2 50 |
jumps before the PS transition occurs. This means that phas
slips occur from time to time and the phase difference
changes by Z during a rather small interval of time.

The intermittent behavior and its scaling properties near Yo Or
the PS transition in a coupled Baler system was studied by
several author§4,5]. They provided an explanation for the
phase jumps by reducing the original system into a simplified _so |
model describing an overdamped patrticle sliding in a “noisy
wash-board potential.” Also by studying the scaling rules of
the jumping behavior, they found that the phenomenon is

W]_’ZZ - 0.521’2"_ 0.05N112+ G(Wzyl_ W1,2)7

related with type-I intermittencf/7] in the presence of noise ‘109160

[4,5]. So far, this has been known to be the only route to the X

PS transition in two coupled self-sustained chaotic oscilla- 0 X

tor_s,t while nothing forbids other types of intermittency to  £i5 1 The phase portrait of one of two coupled HRO's pro-
exist.

. .. jected on thex-y plane. Initial values for HRO’s 1 and 2 are
In this paper, we report another route to PS transitiony (0y=—20.0, y,(0)=2,(0)=0.0, w;(0)=15.0 and x,(0)

exhibiting = 27 jumps, which is characterized by the type-Il = —20.1,y,(0)=2z,(0)=0.0, w,(0)=15.1, respectively. Equation
(1) is numerically solved by using a fourth-order Runge-Kutta
method with the parameter mismat&t{) =0.001, and the same
*Email address: chmkim@mail.paichai.ac.kr values are used throughout this paper.
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‘ Here, we are interested in this new type of phase jumping
behavior and would like to uncover the basic structure be-
hind it. For this purpose, the following equation for the phase
difference¢ is obtained from Eq(2):

4
d¢ . .
, H:AQ+(O.25+e)(3|n0100501—5|n02cos&z)
¥id
+ Zsing 22'9+\7V1 avvz 0
0 A—lSII’l 1—A—25|n 2 A—lCOS 1—A—2COS 2
Az Aq .
-2n — €| —Sin#,c0sh,—-—C0shSin b, |. 3
A, A,

0 5000 10000 15000 20000 The right-hand side of Eq3) can be rewritten in terms ap

by grouping relevant terms, and then we obtain the following
FIG. 2. Time series of phase differenge in two coupled phase equation similar to that describing phase locking of
HRO'’s for various values ofa) €=0.16, (b) €e=0.17, and(c) e periodic oscillators in the presence of noj&e8,9:
=0.18. =27 phase jumps are shown for the casegayfand (b),
while for (c) the PS transition seems to be achieved for the observed d¢

. . ¢
time scale. EZAQ"‘asmd"FBS'nE*'f, (4)

To observe PS we must define a suitable phase related where
this system. Since the phase portrait of a hyperchaotic
Rossler oscillator in thex-y plane explicitly shows a rota- a=(0.25+ €)cod 0y + 6,) — f(& ﬁ)
tional trajectory around a center(,y,) as shown in Fig. 1, ' 1RV 2 AL A
the phase can be defined in relation with this rotation, i.e.,

Xy pandy, , are transformed into polar variablésg , and 6, , Z1 0,+6,\ Wy (6,46,
around the center of the rotation whereA,, B=2 A8 2 | A, > ,
= (X1~ X0) *+ (Y12~ Yo)* and 01,=tan (Y1,
—V¥o)/(X12—X0)]. With these variables, Ed1) can be re- . oW
written as follows: =(—1— 2)3in0 +| == )cos&
AT A SN R TR, 000
A1,2: 0.256\1125"1201,2_ 21Y2C056112+ \7v1’28in 612 € ( A2 Al)
— | —=—=—=]|sin(6;+ 6,).
+E(Azylcosazylcosel'z_Al'zcogaz’l), 2 Al A2 ! 2
. ] Note that there are two time scales, i.e., the fast one,
01,2=1,+0.2558in6, ;€086 27/ Q4 ,, related to the frequency of each individual oscilla-
~ tor in Eq. (2), and the slow one, 2/A(), originating from
LAy, 01 o+ W—LZCOSBLZ the frequency mismatch in E¢8) which is the characteristic
A1 A1z time of ¢ dynamics. Sincer andB and¢ are fast fluctuating

A pieces compared with the time scale gfvariable, qualita-
—€ ilcosgz 1—C0S0; 5| SiNb; 5, 2) tive features of¢p dynamics can be revealed after averaging
A1z ' ' ' « andB over the slow time scale, whilg is left intact as an
_ external noise in Eq4):
21'2: 30+ (A1‘2C0391'2+ XO)Zl,ZY d"‘
)

: 9 = e ]
Wy 5= — 0.5z 5+ 0.05W o+ €(Wyp 1— W1 o), gi —Flee+e¢ (5)

Whererly2 is shorthand fow; 5+ X2, , andx,=—16.0 and where

yo=0.0 are used. By solving Eql) or (2) numerically, the %

phase difference¢g= 6,— 6,) of the two oscillators is ob- F($,e)=AQ+(a)sing+(B)sin—. (6)
tained as shown in Fig. 2. Note that the onset of PS occurs 2

near e.=0.18 [6]. Before the onset of PS, the smaller the - _
coupling is the more frequently2 jumps occur similar to N EGs. (5 and (6), by ¢ we mean a new phase variable
the case of the Rusler system. But in our system, the phasewhich simulates originat) dynamics. Heréa), () repre-
difference jumps by 2 upwards or downwards irregularly Sent averaged valueg fora Iong enough time interval which is
as shown in Fig. 2, while in the Reler case it jumps only order of 2w/A€Q. This equation describes an overdamped
upwards monotonous'y_ In th|s respect' our System Shou'd tﬂartlcle mOV|ng Ina pOtentIal Urlder the |nﬂuence Of el(tema|
distinguished from the Rssler system qualitativelj2,4,5]. noise §, where the potentiaV(¢,€) is defined byF(¢)
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FIG. 4. (a) Schematic relation among force, potential, and return
map.(b) Return mapblack dot$ of original system(1) and return
map(gray dotg from the averaged E@4). (c), (d) Magnified return
o maps around one potential well with—=0.16 ande;=0.038, re-
=—dV(¢)/d¢ [4,10]. This averaged potential is obtained by spectively. Note that the tangent line at the center stable fixed point
integrating the forceF($,e) with respect to'¢, i.e., Pecomes tangential to the diagonal line(d).
V(¢,e)=—[?F(¢',e)dd’ up to an arbitrary integration
constant

FIG. 3. (a) Time series of phase jumping dynamidb) the
time-averaged forc€(¢), and(c) the potentiaM(¢) at e=0.16.

from the original systent2). This means that the averaged
Eq. (5) properly describes the main features02 7 phase
~ jumping dynamics. From the shape of the curves, it is clear
V(9 e)= —AQ<~15+<a)cost+2(B> cosf. (7) that the ret.urn map is actually that of typ.e-ll inte_rmittepcy
2 [7,11. In Fig. 4(c) the center is a stable fixed point which
) . . becomes unstable when the slope at this point equals 1.0 at
Figures 3a), 3(b), and 3c) show time series ofp at €  the bifurcation pointe,=0.038 as shown in Fig.(d). The
=0.16, the corresponding forde and the potentiaV, re-  trajectory can escape from the center to the nearest neighbor-
spectively. As shown in Fig. (), the existence of jng stable fixed points located each a2+ distance away
27-periodic minima is the main feature of the potential re-through the stochastic process. Therefore the scaling of the
lated with the phase jumping dynamics. Note that the overallyerage laminar length ap (here the laminar length is the
slope of this potential is negligible due to the small constantime elapsed between two successit@ jumps is ex-

force termA(), so that the “wash-board potential” picture pected to follow that of type-Il intermittency in the presence
[4] is not applicable to studying the bifurcation related with of external noise.

the intermittency in this system. With this potential structure, |y order to verify the above conjecture, we compare the
however, we can qualitatively explain the phase jumping dyzyerage laminar length scaling relation obtained numerically
namics as a hopping of an overdamped particle betweefiom Eq. (2) with the analytical result obtained from the
2-periodic minima in the potential through ttstochastic  Egkker-Planck equatiofFPB. The local Poincarenap of

processdriven by the external noisy forcg. In Fig. 3C),  type-II intermittency with external noise is described by the
when a particle is in a potential well, it can jump randomly to fo|lowing difference equatiof10—13:

the nearest neighboring potential wells since the barrier

heights of both sides of the well are similar. When the well is 11 T 22 T
not deep, the particle resides there for a short time interval 10 | 10
but it resides there longer when the well is deep. This behav- ¢ [ e 2r (b) 5
ior can be easily observed in the time seriespof Agl S 18l

To determine the type of intermittency explicitly, we ob- ¥ -
tain the return map o$ from the original Eq(2) by finding =y 1 $ 16|
¢, at every 2r rotation of phased,. Figure 4a) shows a 61 S
schematic relation among force, potential, and the corre- 5| 1 Star
sponding return map. In Fig.(d), the return map shows af 8 L
many c_ells separate_d byWZCorrespondin_g to %-_periodic 31/ —In<l>y~2.6 - 121 \slope~2.0 ]
minima in the potential structure. The trajectory in the return e 1 L
map moves from one cell to the neighboring cells irregularly 0 0.0040.00800120.016 0.02 -25 -24 -23 22 21 -2
in accordance witht-27 jumps. To see the structure more le—l Inle—l
clearly, we obtain the return map @ffrom the averaged Eq. FIG. 5. Scaling relation: average laminar lengtil)irvs |e;
(5) in one cell at every 2 rotation of phasef; when ¢ —¢|2in (a) and In(Il)—2.6) vs Ie— ¢ in (b). Note that the slope

=0. The solid curves in Figs.(8), 4(c), and 4d) are the in (b) is approximately 2.0 within= 5% error in agreement with the
results and they quite well follow the one obtained directlyanalytic estimation from the FPE.
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Xns1=(1+ €)Xyt axc+ J2D&,, (8)  5(b) is very close to 2.0 within=5% error, which agrees

with the scaling exponent in EGL0). Therefore our conjec-
wherea is a positive arbitrary constant amdlis the disper- ture based on the return map analysis is verified and
sion of Gaussian noisg,. It is well known that the above strengthened by this remarkable agreement with the result
map (8) can be approximated to the backward FPE in theobtained from the FPE. Also this agreement in turn justifies

long laminar regiorj14]: our averaging out the fast fluctuating factersand 8 in Eq.
(5), which marginally contribute as multiplicative perturba-
dG(X,t) . 9G(x,1) *G(x,1) tions in phase jumping dynamics.
o —V'(x) IX +D 2 ) In conclusion, we have found the type-Il intermittency

route to the PS transition in a system of two coupled self-
whereG(x,t) is the probability density of a particle at,t). sustained HRO's. In this system, the phase difference be-
The scaling relation for the average escaping time can bBveen two oscillators exhibits apparently irregular2
derived analytically from this FPE. According to the analyti- jumps near the onset of the PS transition. Furthermore, we

cal estimation made in our recent wofk5], the average have identified this behavior as type-Il intermittency with
laminar length scales as follows whep< e: external noise through the return map analysis and the FPE

) approach.
D~ gexp|e— el?). 10
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